mathematics education reform and lifestyles
loci: Who cares?
Opening
well known is the locus of a point moving always remaining the same distance from two separate fixed points A and B. That is, the point X moves in the plane such that AX = XB or, equivalently, AX-XB = 0. Well, I mean ... well known for one who has ever seen and used many times. This is the bisector of the segment AB, ie perpendicular to AB at its midpoint.
Development
The analytical form of view this result is placed in the Cartesian coordinates of points A and B in the simplest way possible: A = (a, 0) and B = (b, 0). So if X = (x, y), we apply the distance formula between two points for
(xa) ^ 2 + y ^ 2 = (xb) ^ 2 + y ^ 2, where we get
xa = xb or xa =- x + b.
From the first equation gives a = b there is no segment AB because both points coincide (and nothing can be concluded.)
From the second you get x = (a + b) / 2. And this is the result we want.
But this requires analytical result a "translation." First you have to "read" him that if the abscissa (x-point moves) remains constant, then the point X describes a line perpendicular to the axis x (moving parallel to the axis and then
always stays the same distance ( a + b) / 2 of it). Second must be "read" that (a + b) / 2 is the midpoint between A and B. Close
But, right now! this speech is raised from the standpoint of the teacher. Let's look now from the standpoint of the boy of 16 who is taking his first course in analytic geometry. What do you know and what does not? Assuming
understand natural language English, are in any way some terms you may not know:
locus "?
Distance?
fucking "fixed?
"bisector?
"coordinates?
point "mean?
"analytically?
"Cartesian plane?
"abscissa?
Professor reflect on these possible unknowns can be paralyzed and conclude that mathematics education is impossible. Also because the current educational reform could be demanding not only learn these concepts
but learns them significantly.
But "significantly" is an adjective with a thousand interpretations ...
and the parent seems to be 1) team building, 2) engage in any activity that creates appropriate, 3) discussion and 4) conclusion ...
And the key to this interpretation of "activity", so that the learning of relevant content (in terms of discipline) has been replaced in practice by implementation of significant activities for students (item of view of experts in education). Neither good nor bad just a trend of contemporary education. Opening 2
But look at this other locus. Details: segment AB constant k, the point X moves so that ^ 2-XB AX ^ 2 = k.
Riddle: What describes locus X?
Development 2 Solution: (for extreme cases)
If k = AB ^ 2 then AX = XB ^ 2 ^ 2 + AB ^ 2 and is (recalling the Pythagorean theorem) that the locus is a perpendicular to AB and B.
If AB =- k ^ 2 then AX ^ 2 + AB ^ 2 = XB ^ 2 and is (again by Pythagoras) the locus is a perpendicular to segment AB but now by A.
If k = 0 then there is the bisector as locus described by the point X.
Of these three extreme cases can develop the assumption that the locus is a perpendicular searched the segment AB. And then there's another idea: k depends on the cross (and the crossing depends on k) of the intersection of the perpendicular to the segment (with the line, rather) AB. (Assume that crosses X ', then k = AX' ^ 2-XB '^ 2.)
is left as an exercise for the reader the analytical demonstration with X = (x, y), A = (a, 0) , B = (b, 0) and k either, where you should get - after doing some algebra - 2 (ab) x = a ^ 2-b ^ 2 + k. As an exercise also aims to "read" here
the geometric interpretation in two parts as in the case of the perpendicular: how do we know that the locus is perpendicular to segment AB? How know where it intersects the line AB? Close
2
I would like to stress here, as a closing comment, that the activity of problem solving school mathematics there are three well-defined moments: a formulation (analytical or synthetic) of the problem - using data to define a solution plan - a plan monitoring, and interpretation of results should answer the question posed in the title.
And to the question of education expert "what applies to this?", Would respond with "is a workout." And if the experts say: A training and what for Why? Well, this is a cognitive skills training, to
while the trainee is being trained to show you the potential of symbolic reasoning in mathematics.
And if you insist: And all this will serve you in your adult life? Well, it all depends on your lifestyle and what specific practices are given in it ... You do what you have been served not have developed those skills? JMD in VL
greets (and have presented them this picture when he went to eat squash blossom quesadillas to the Faculty of Sciences UNAM - October 2005)
0 comments:
Post a Comment